Step-by-step debugging with IPython Step-by-step debugging with IPython python python

Step-by-step debugging with IPython


What about ipdb.set_trace() ? In your code :

import ipdb; ipdb.set_trace()

update: now in Python 3.7, we can write breakpoint(). It works the same, but it also obeys to the PYTHONBREAKPOINT environment variable. This feature comes from this PEP.

This allows for full inspection of your code, and you have access to commands such as c (continue), n (execute next line), s (step into the method at point) and so on.

See the ipdb repo and a list of commands. IPython is now called (edit: part of) Jupyter.


ps: note that an ipdb command takes precedence over python code. So in order to write list(foo) you'd need print(list(foo)), or !list(foo) .

Also, if you like the ipython prompt (its emacs and vim modes, history, completions,…) it's easy to get the same for your project since it's based on the python prompt toolkit.


You can use IPython's %pdb magic. Just call %pdb in IPython and when an error occurs, you're automatically dropped to ipdb. While you don't have the stepping immediately, you're in ipdb afterwards.

This makes debugging individual functions easy, as you can just load a file with %load and then run a function. You could force an error with an assert at the right position.

%pdb is a line magic. Call it as %pdb on, %pdb 1, %pdb off or %pdb 0. If called without argument it works as a toggle.


(Update on May 28, 2016) Using RealGUD in Emacs

For anyone in Emacs, this thread shows how to accomplish everything described in the OP (and more) using

  1. a new important debugger in Emacs called RealGUD which can operate with any debugger (including ipdb).
  2. The Emacs package isend-mode.

The combination of these two packages is extremely powerful and allows one to recreate exactly the behavior described in the OP and do even more.

More info on the wiki article of RealGUD for ipdb.


Original answer:

After having tried many different methods for debugging Python, including everything mentioned in this thread, one of my preferred ways of debugging Python with IPython is with embedded shells.

Defining a custom embedded IPython shell:

Add the following on a script to your PYTHONPATH, so that the method ipsh() becomes available.

import inspect# First import the embed functionfrom IPython.terminal.embed import InteractiveShellEmbedfrom IPython.config.loader import Config# Configure the prompt so that I know I am in a nested (embedded) shellcfg = Config()prompt_config = cfg.PromptManagerprompt_config.in_template = 'N.In <\\#>: 'prompt_config.in2_template = '   .\\D.: 'prompt_config.out_template = 'N.Out<\\#>: '# Messages displayed when I drop into and exit the shell.banner_msg = ("\n**Nested Interpreter:\n""Hit Ctrl-D to exit interpreter and continue program.\n""Note that if you use %kill_embedded, you can fully deactivate\n""This embedded instance so it will never turn on again")   exit_msg = '**Leaving Nested interpreter'# Wrap it in a function that gives me more context:def ipsh():    ipshell = InteractiveShellEmbed(config=cfg, banner1=banner_msg, exit_msg=exit_msg)    frame = inspect.currentframe().f_back    msg   = 'Stopped at {0.f_code.co_filename} at line {0.f_lineno}'.format(frame)    # Go back one level!     # This is needed because the call to ipshell is inside the function ipsh()    ipshell(msg,stack_depth=2)

Then, whenever I want to debug something in my code, I place ipsh() right at the location where I need to do object inspection, etc. For example, say I want to debug my_function below

Using it:

def my_function(b):  a = b  ipsh() # <- This will embed a full-fledged IPython interpreter  a = 4

and then I invoke my_function(2) in one of the following ways:

  1. Either by running a Python program that invokes this function from a Unix shell
  2. Or by invoking it directly from IPython

Regardless of how I invoke it, the interpreter stops at the line that says ipsh(). Once you are done, you can do Ctrl-D and Python will resume execution (with any variable updates that you made). Note that, if you run the code from a regular IPython the IPython shell (case 2 above), the new IPython shell will be nested inside the one from which you invoked it, which is perfectly fine, but it's good to be aware of. Eitherway, once the interpreter stops on the location of ipsh, I can inspect the value of a (which be 2), see what functions and objects are defined, etc.

The problem:

The solution above can be used to have Python stop anywhere you want in your code, and then drop you into a fully-fledged IPython interpreter. Unfortunately it does not let you add or remove breakpoints once you invoke the script, which is highly frustrating. In my opinion, this is the only thing that is preventing IPython from becoming a great debugging tool for Python.

The best you can do for now:

A workaround is to place ipsh() a priori at the different locations where you want the Python interpreter to launch an IPython shell (i.e. a breakpoint). You can then "jump" between different pre-defined, hard-coded "breakpoints" with Ctrl-D, which would exit the current embedded IPython shell and stop again whenever the interpreter hits the next call to ipsh().

If you go this route, one way to exit "debugging mode" and ignore all subsequent breakpoints, is to use ipshell.dummy_mode = True which will make Python ignore any subsequent instantiations of the ipshell object that we created above.