Algorithm to convert RGB to HSV and HSV to RGB in range 0-255 for both Algorithm to convert RGB to HSV and HSV to RGB in range 0-255 for both c c

Algorithm to convert RGB to HSV and HSV to RGB in range 0-255 for both


I've used these for a long time - no idea where they came from at this point... Note that the inputs and outputs, except for the angle in degrees, are in the range of 0 to 1.0.

NOTE: this code does no real sanity checking on inputs. Proceed with caution!

typedef struct {    double r;       // a fraction between 0 and 1    double g;       // a fraction between 0 and 1    double b;       // a fraction between 0 and 1} rgb;typedef struct {    double h;       // angle in degrees    double s;       // a fraction between 0 and 1    double v;       // a fraction between 0 and 1} hsv;static hsv   rgb2hsv(rgb in);static rgb   hsv2rgb(hsv in);hsv rgb2hsv(rgb in){    hsv         out;    double      min, max, delta;    min = in.r < in.g ? in.r : in.g;    min = min  < in.b ? min  : in.b;    max = in.r > in.g ? in.r : in.g;    max = max  > in.b ? max  : in.b;    out.v = max;                                // v    delta = max - min;    if (delta < 0.00001)    {        out.s = 0;        out.h = 0; // undefined, maybe nan?        return out;    }    if( max > 0.0 ) { // NOTE: if Max is == 0, this divide would cause a crash        out.s = (delta / max);                  // s    } else {        // if max is 0, then r = g = b = 0                      // s = 0, h is undefined        out.s = 0.0;        out.h = NAN;                            // its now undefined        return out;    }    if( in.r >= max )                           // > is bogus, just keeps compilor happy        out.h = ( in.g - in.b ) / delta;        // between yellow & magenta    else    if( in.g >= max )        out.h = 2.0 + ( in.b - in.r ) / delta;  // between cyan & yellow    else        out.h = 4.0 + ( in.r - in.g ) / delta;  // between magenta & cyan    out.h *= 60.0;                              // degrees    if( out.h < 0.0 )        out.h += 360.0;    return out;}rgb hsv2rgb(hsv in){    double      hh, p, q, t, ff;    long        i;    rgb         out;    if(in.s <= 0.0) {       // < is bogus, just shuts up warnings        out.r = in.v;        out.g = in.v;        out.b = in.v;        return out;    }    hh = in.h;    if(hh >= 360.0) hh = 0.0;    hh /= 60.0;    i = (long)hh;    ff = hh - i;    p = in.v * (1.0 - in.s);    q = in.v * (1.0 - (in.s * ff));    t = in.v * (1.0 - (in.s * (1.0 - ff)));    switch(i) {    case 0:        out.r = in.v;        out.g = t;        out.b = p;        break;    case 1:        out.r = q;        out.g = in.v;        out.b = p;        break;    case 2:        out.r = p;        out.g = in.v;        out.b = t;        break;    case 3:        out.r = p;        out.g = q;        out.b = in.v;        break;    case 4:        out.r = t;        out.g = p;        out.b = in.v;        break;    case 5:    default:        out.r = in.v;        out.g = p;        out.b = q;        break;    }    return out;     }


You can also try this code without floats (faster but less accurate):

typedef struct RgbColor{    unsigned char r;    unsigned char g;    unsigned char b;} RgbColor;typedef struct HsvColor{    unsigned char h;    unsigned char s;    unsigned char v;} HsvColor;RgbColor HsvToRgb(HsvColor hsv){    RgbColor rgb;    unsigned char region, remainder, p, q, t;    if (hsv.s == 0)    {        rgb.r = hsv.v;        rgb.g = hsv.v;        rgb.b = hsv.v;        return rgb;    }    region = hsv.h / 43;    remainder = (hsv.h - (region * 43)) * 6;     p = (hsv.v * (255 - hsv.s)) >> 8;    q = (hsv.v * (255 - ((hsv.s * remainder) >> 8))) >> 8;    t = (hsv.v * (255 - ((hsv.s * (255 - remainder)) >> 8))) >> 8;    switch (region)    {        case 0:            rgb.r = hsv.v; rgb.g = t; rgb.b = p;            break;        case 1:            rgb.r = q; rgb.g = hsv.v; rgb.b = p;            break;        case 2:            rgb.r = p; rgb.g = hsv.v; rgb.b = t;            break;        case 3:            rgb.r = p; rgb.g = q; rgb.b = hsv.v;            break;        case 4:            rgb.r = t; rgb.g = p; rgb.b = hsv.v;            break;        default:            rgb.r = hsv.v; rgb.g = p; rgb.b = q;            break;    }    return rgb;}HsvColor RgbToHsv(RgbColor rgb){    HsvColor hsv;    unsigned char rgbMin, rgbMax;    rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);    rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);    hsv.v = rgbMax;    if (hsv.v == 0)    {        hsv.h = 0;        hsv.s = 0;        return hsv;    }    hsv.s = 255 * long(rgbMax - rgbMin) / hsv.v;    if (hsv.s == 0)    {        hsv.h = 0;        return hsv;    }    if (rgbMax == rgb.r)        hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);    else if (rgbMax == rgb.g)        hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);    else        hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);    return hsv;}

Note that this algorithm uses 0-255 as it's range (not 0-360) as that was requested by the author of this question.


I wrote this in HLSL for our rendering engine, it has no conditions in it:

    float3  HSV2RGB( float3 _HSV )    {        _HSV.x = fmod( 100.0 + _HSV.x, 1.0 );                                       // Ensure [0,1[        float   HueSlice = 6.0 * _HSV.x;                                            // In [0,6[        float   HueSliceInteger = floor( HueSlice );        float   HueSliceInterpolant = HueSlice - HueSliceInteger;                   // In [0,1[ for each hue slice        float3  TempRGB = float3(   _HSV.z * (1.0 - _HSV.y),                                    _HSV.z * (1.0 - _HSV.y * HueSliceInterpolant),                                    _HSV.z * (1.0 - _HSV.y * (1.0 - HueSliceInterpolant)) );        // The idea here to avoid conditions is to notice that the conversion code can be rewritten:        //    if      ( var_i == 0 ) { R = V         ; G = TempRGB.z ; B = TempRGB.x }        //    else if ( var_i == 2 ) { R = TempRGB.x ; G = V         ; B = TempRGB.z }        //    else if ( var_i == 4 ) { R = TempRGB.z ; G = TempRGB.x ; B = V     }        //         //    else if ( var_i == 1 ) { R = TempRGB.y ; G = V         ; B = TempRGB.x }        //    else if ( var_i == 3 ) { R = TempRGB.x ; G = TempRGB.y ; B = V     }        //    else if ( var_i == 5 ) { R = V         ; G = TempRGB.x ; B = TempRGB.y }        //        // This shows several things:        //  . A separation between even and odd slices        //  . If slices (0,2,4) and (1,3,5) can be rewritten as basically being slices (0,1,2) then        //      the operation simply amounts to performing a "rotate right" on the RGB components        //  . The base value to rotate is either (V, B, R) for even slices or (G, V, R) for odd slices        //        float   IsOddSlice = fmod( HueSliceInteger, 2.0 );                          // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)        float   ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice);          // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)        float3  ScrollingRGBForEvenSlices = float3( _HSV.z, TempRGB.zx );           // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)        float3  ScrollingRGBForOddSlices = float3( TempRGB.y, _HSV.z, TempRGB.x );  // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)        float3  ScrollingRGB = lerp( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );        float   IsNotFirstSlice = saturate( ThreeSliceSelector );                   // 1 if NOT the first slice (true for slices 1 and 2)        float   IsNotSecondSlice = saturate( ThreeSliceSelector-1.0 );              // 1 if NOT the first or second slice (true only for slice 2)        return  lerp( ScrollingRGB.xyz, lerp( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice );    // Make the RGB rotate right depending on final slice index    }