What does "Memory allocated at compile time" really mean? What does "Memory allocated at compile time" really mean? c c

What does "Memory allocated at compile time" really mean?


Memory allocated at compile-time means the compiler resolves at compile-time where certain things will be allocated inside the process memory map.

For example, consider a global array:

int array[100];

The compiler knows at compile-time the size of the array and the size of an int, so it knows the entire size of the array at compile-time. Also a global variable has static storage duration by default: it is allocated in the static memory area of the process memory space (.data/.bss section). Given that information, the compiler decides during compilation in what address of that static memory area the array will be.

Of course that memory addresses are virtual addresses. The program assumes that it has its own entire memory space (From 0x00000000 to 0xFFFFFFFF for example). That's why the compiler could do assumptions like "Okay, the array will be at address 0x00A33211". At runtime that addresses are translated to real/hardware addresses by the MMU and OS.

Value initialized static storage things are a bit different. For example:

int array[] = { 1 , 2 , 3 , 4 };

In our first example, the compiler only decided where the array will be allocated, storing that information in the executable.
In the case of value-initialized things, the compiler also injects the initial value of the array into the executable, and adds code which tells the program loader that after the array allocation at program start, the array should be filled with these values.

Here are two examples of the assembly generated by the compiler (GCC4.8.1 with x86 target):

C++ code:

int a[4];int b[] = { 1 , 2 , 3 , 4 };int main(){}

Output assembly:

a:    .zero   16b:    .long   1    .long   2    .long   3    .long   4main:    pushq   %rbp    movq    %rsp, %rbp    movl    $0, %eax    popq    %rbp    ret

As you can see, the values are directly injected into the assembly. In the array a, the compiler generates a zero initialization of 16 bytes, because the Standard says that static stored things should be initialized to zero by default:

8.5.9 (Initializers) [Note]:
Every object of static storage duration is zero-initialized at program startup before any other initial- ization takes place. In some cases, additional initialization is done later.

I always suggest people to disassembly their code to see what the compiler really does with the C++ code. This applies from storage classes/duration (like this question) to advanced compiler optimizations. You could instruct your compiler to generate the assembly, but there are wonderful tools to do this on the Internet in a friendly manner. My favourite is GCC Explorer.


Memory allocated at compile time simply means there will be no further allocation at run time -- no calls to malloc, new, or other dynamic allocation methods. You'll have a fixed amount of memory usage even if you don't need all of that memory all of the time.

Isn't memory allocation by definition a runtime concept?

The memory is not in use prior to run time, but immediately prior to execution starting its allocation is handled by the system.

If I make a 1KB statically allocated variable in my C/C++ code, will that increase the size of the executable by the same amount?

Simply declaring the static will not increase the size of your executable more than a few bytes. Declaring it with an initial value that is non-zero will (in order to hold that initial value). Rather, the linker simply adds this 1KB amount to the memory requirement that the system's loader creates for you immediately prior to execution.


Memory allocated in compile time means that when you load the program, some part of the memory will be immediately allocated and the size and (relative) position of this allocation is determined at compile time.

char a[32];char b;char c;

Those 3 variables are "allocated at compile time", it means that the compiler calculates their size (which is fixed) at compile time. The variable a will be an offset in memory, let's say, pointing to address 0, b will point at address 33 and c at 34 (supposing no alignment optimization). So, allocating 1Kb of static data will not increase the size of your code, since it will just change an offset inside it. The actual space will be allocated at load time.

Real memory allocation always happens in run time, because the kernel needs to keep track of it and to update its internal data structures (how much memory is allocated for each process, pages and so on). The difference is that the compiler already knows the size of each data you are going to use and this is allocated as soon as your program is executed.

Remember also that we are talking about relative addresses. The real address where the variable will be located will be different. At load time the kernel will reserve some memory for the process, lets say at address x, and all the hard coded addresses contained in the executable file will be incremented by x bytes, so that variable a in the example will be at address x, b at address x+33 and so on.