memory barrier and atomic_t on linux memory barrier and atomic_t on linux linux linux

memory barrier and atomic_t on linux


32-bit x86 processors don't provide simple atomic read operations for 64-bit types. The only atomic operation on 64-bit types on such CPUs that deals with "normal" registers is LOCK CMPXCHG8B, which is why it is used here. The alternative is to use MOVQ and MMX/XMM registers, but that requires knowledge of the FPU state/registers, and requires that all operations on that value are done with the MMX/XMM instructions.

On 64-bit x86_64 processors, aligned reads of 64-bit types are atomic, and can be done with a MOV instruction, so only a plain read is required --- the use of volatile is just to ensure that the compiler actually does a read, and doesn't cache a previous value.

As for the read ordering, the inline assembler you quote ensures that the compiler emits the instructions in the right order, and this is all that is required on x86/x86_64 CPUs, provided the writes are correctly sequenced. LOCKed writes on x86 have a total ordering; plain MOV writes provide "causal consistency", so if thread A does x=1 then y=2, if thread B reads y==2 then a subsequent read of x will see x==1.

On IA-64, PowerPC, SPARC, and other processors with a more relaxed memory model there may well be more to atomic64_read() and barrier().


x86 CPUs don’t do read-after-read reordering, so it is sufficient to prevent the compiler from doing any reordering. On other platforms such as PowerPC, things will look a lot different.