Atomically increment two integers with CAS Atomically increment two integers with CAS multithreading multithreading

Atomically increment two integers with CAS


Make me think of a sequence lock. Not very accurate (putting this from memory) but something along the lines of:

let x,y and s be 64 bit integers.

To increment:

atomic s++ (I mean atomic increment using 64 bit CAS op)

memory barrieratomic x++atomic y++atomic s++memory barrier

To read:

do {    S1 = load s    X = load x    Y = load y    memory barrier    S2 = load s} while (S1 != S2)

Also see https://en.wikipedia.org/wiki/Seqlock


If sse2 is available, you can use paddq to add 2 64 bit integers to two other 64 bit integers in one instruction.

#include "emmintrin.h"//initialize your values somewhere://const __m128i ones = _mm_set1_epi64x(1);//volatile register __m128i vars = //    _mm_set_epi64x(24,7);static inline __m128i inc_both(__m128i vars, __m128i ones){  return _mm_add_epi64(vars,ones);}

This should compile to

    paddq  %xmm0, %xmm1

Since it is static inline, it may use other xmm registers though. If there is significant register pressure the ones operands may become ones(℅rip)

Note: this can be used for adding values other than 1 and there are similar operations for most other math, bitwise and compare instructions, should you need them.

So you can use the lock prefix and make it into an inline asm macro

#define inc64x2(vars) asm volatile( \    "paddq %0, %1\n":"+x"(vars):"x"(ones) \  );

The arm neon equivalent is something like: vaddq_s64(...), but there is a great article about arm/x86 equivalents here.


I've got a solution I've tested. Contained herein is a soup to nuts proof of concept program.

The algorithm is a "use CAS thread id gate" as the 3rd integer. I watched the video talk twice, and I believe this qualifies. It may not be the algorithm that the presenter was thinking of, but it does work.

The X and Y values can be anywhere in memory and the program places them far enough away from each other that they are on different cache lines. It doesn't really matter.


A quick description of the algorithm:

Each thread has a unique id number or tid (non-zero), taken from one's favorite source: pthead_t, getpid, gettid, make one up by whatever means you want. In the program, it just assigns them sequentially starting from 1.

Each thread will call the increment function with this number.

The increment function will spin on a global gate variable using CAS with an old value of 0 and a new value of tid.

When the CAS succeeds, the thread now "owns" things. In other words, if the gate is zero, it's up for grabs. A non-zero value is the tid of the owner and the gate is locked.

Now, the owner is free to increment the X and Y values with simple x += 1 and y += 1.

After that, the increment function releases by doing a store of 0 into the gate.


Here is the diagnostic/proof-of-concept program with everything. The algorithm itself has no restrictions, but I coded it for my machine.

Some caveats:

  • It assumes gcc/clang
  • It assumes a 64 bit x86_64 arch.
  • This was coded using nothing but inline asm and needs no [nor uses any] compiler atomic support for clarity, simplicity, and transparency.
  • This was built under linux, but should work on any "reasonable" x86 machine/OS (e.g. BSD, OSX should be fine, cygwin probably, and mingw maybe)
  • Other arches are fine if they support CAS, I just didn't code for them (e.g. arm might work if you code the CAS with ldex/stex pairs)
  • There are enough abstract primitives that this would/should be easy.
  • No attempt at Windows compatibility [if you want it, do your own port but send me no tears--or comments :-)].
  • The makefile and program have been defaulted to best values
  • Some x86 CPUs may need to use different defaults (e.g. need fence instructions). See the makefile.

Anyway, here it is:

// caslock -- prove cas lock algorithm#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <time.h>#include <pthread.h>#define systls              __thread// repeat the madness only once#ifdef __clang__#define inline_common       inline#else#define inline_common       static inline#endif#define inline_always       inline_common __attribute__((__always_inline__))#define inline_never        __attribute__((__noinline__))// WARNING: inline CAS fails for gcc but works for clang!#if _USE_CASINLINE_#define inline_cas          inline_always#else#define inline_cas          inline_never#endiftypedef unsigned int u32;typedef unsigned long long u64;#ifndef LOOPMAX#define LOOPMAX             1000000#endif#ifndef TIDMAX#define TIDMAX              20#endif#if _USE_VPTR_typedef volatile u32 *xptr32_p;typedef volatile u64 *xptr64_p;#elsetypedef u32 *xptr32_p;typedef u64 *xptr64_p;#endif#if _USE_TID64_typedef u64 tid_t;#define tidload(_xptr)                  loadu64(_xptr)#define tidcas(_xptr,_oval,_nval)       casu64(_xptr,_oval,_nval)#define tidstore(_xptr,_nval)           storeu64(_xptr,_nval)#elsetypedef u32 tid_t;#define tidload(_xptr)                  loadu32(_xptr)#define tidcas(_xptr,_oval,_nval)       casu32(_xptr,_oval,_nval)#define tidstore(_xptr,_nval)           storeu32(_xptr,_nval)#endiftid_t tidgate;                          // gate controltid_t readycnt;                         // number of threads readytid_t donecnt;                          // number of threads complete// ensure that the variables are nowhere near each otheru64 ary[100];#define kickoff     ary[32]             // sync to fire threads#define xval        ary[31]             // the X value#define yval        ary[87]             // the Y valueint inctype;                            // increment algorithm to usetid_t tidmax;                           // maximum number of tasksu64 loopmax;                            // loop maximum for each task// task controlstruct tsk {    tid_t tsk_tid;                      // task id    u32 tsk_casmiss;                    // cas miss count};typedef struct tsk tsk_t;tsk_t *tsklist;                         // task listsystls tsk_t *tskcur;                   // current task block// show progress#define PGR(_pgr) \    do { \        fputs(_pgr,stdout); \        fflush(stdout); \    } while (0)// NOTE: some x86 arches need fence instructions//   0 -- no fence instructions//   1 -- use mfence//   2 -- use lfence/sfence#if _USE_BARRIER_ == 0#define BARRIER_RELEASE             ""#define BARRIER_ACQUIRE             ""#define BARRIER_ALL                 ""#elif _USE_BARRIER_ == 1#define BARRIER_ACQUIRE             "\tmfence\n"#define BARRIER_RELEASE             "\tmfence\n"#define BARRIER_ALL                 "\tmfence\n"#elif _USE_BARRIER_ == 2#define BARRIER_ACQUIRE             "\tlfence\n"#define BARRIER_RELEASE             "\tsfence\n"#define BARRIER_ALL                 "\tmfence\n"#else#error caslock: unknown barrier type#endif// barrier_acquire -- acquire barrierinline_always voidbarrier_acquire(void){    __asm__ __volatile__ (        BARRIER_ACQUIRE        :        :        :   "memory");}// barrier_release -- release barrierinline_always voidbarrier_release(void){    __asm__ __volatile__ (        BARRIER_RELEASE        :        :        :   "memory");}// barrier -- barrierinline_always voidbarrier(void){    __asm__ __volatile__ (        BARRIER_ALL        :        :        :   "memory");}// casu32 -- compare and exchange four bytes// RETURNS: 1=ok, 0=failinline_cas intcasu32(xptr32_p xptr,u32 oldval,u32 newval){    char ok;    __asm__ __volatile__ (        "   lock\n"        "   cmpxchg     %[newval],%[xptr]\n"        "   sete        %[ok]\n"        :   [ok] "=r" (ok),            [xptr] "=m" (*xptr)        :   "a" (oldval),            [newval] "r" (newval)        :   "memory");    return ok;}// casu64 -- compare and exchange eight bytes// RETURNS: 1=ok, 0=failinline_cas intcasu64(xptr64_p xptr,u64 oldval,u64 newval){    char ok;    __asm__ __volatile__ (        "   lock\n"        "   cmpxchg     %[newval],%[xptr]\n"        "   sete        %[ok]\n"        :   [ok] "=r" (ok),            [xptr] "=m" (*xptr)        :   "a" (oldval),            [newval] "r" (newval)        :   "memory");    return ok;}// loadu32 -- load value with barrier// RETURNS: loaded valueinline_always u32loadu32(const xptr32_p xptr){    u32 val;    barrier_acquire();    val = *xptr;    return val;}// loadu64 -- load value with barrier// RETURNS: loaded valueinline_always u64loadu64(const xptr64_p xptr){    u64 val;    barrier_acquire();    val = *xptr;    return val;}// storeu32 -- store value with barrierinline_always voidstoreu32(xptr32_p xptr,u32 val){    *xptr = val;    barrier_release();}// storeu64 -- store value with barrierinline_always voidstoreu64(xptr64_p xptr,u64 val){    *xptr = val;    barrier_release();}// qsleep -- do a quick sleepinline_always voidqsleep(int bigflg){    struct timespec ts;    if (bigflg) {        ts.tv_sec = 1;        ts.tv_nsec = 0;    }    else {        ts.tv_sec = 0;        ts.tv_nsec = 1000;    }    nanosleep(&ts,NULL);}// incby_tidgate -- increment by using thread id gatevoidincby_tidgate(tid_t tid)// tid -- unique id for accessing entity (e.g. thread id){    tid_t *gptr;    tid_t oval;    gptr = &tidgate;    // acquire the gate    while (1) {        oval = 0;        // test mode -- just do a nop instead of CAS to prove diagnostic#if _USE_CASOFF_        *gptr = oval;        break;#else        if (tidcas(gptr,oval,tid))            break;#endif        ++tskcur->tsk_casmiss;    }#if _USE_INCBARRIER_    barrier_acquire();#endif    // increment the values    xval += 1;    yval += 1;#if _USE_INCBARRIER_    barrier_release();#endif    // release the gate    // NOTE: CAS will always provide a barrier#if _USE_CASPOST_ && (_USE_CASOFF_ == 0)    oval = tidcas(gptr,tid,0);#else    tidstore(gptr,0);#endif}// tskcld -- child taskvoid *tskcld(void *arg){    tid_t tid;    tid_t oval;    u64 loopcur;    tskcur = arg;    tid = tskcur->tsk_tid;    // tell master thread that we're fully ready    while (1) {        oval = tidload(&readycnt);        if (tidcas(&readycnt,oval,oval + 1))            break;    }    // wait until we're given the starting gun    while (1) {        if (loadu64(&kickoff))            break;        qsleep(0);    }    // do the increments    for (loopcur = loopmax;  loopcur > 0;  --loopcur)        incby_tidgate(tid);    barrier();    // tell master thread that we're fully complete    while (1) {        oval = tidload(&donecnt);        if (tidcas(&donecnt,oval,oval + 1))            break;    }    return (void *) 0;}// tskstart -- start a child taskvoidtskstart(tid_t tid){    pthread_attr_t attr;    pthread_t thr;    int err;    tsk_t *tsk;    tsk = tsklist + tid;    tsk->tsk_tid = tid;    pthread_attr_init(&attr);    pthread_attr_setdetachstate(&attr,1);    err = pthread_create(&thr,&attr,tskcld,tsk);    pthread_attr_destroy(&attr);    if (err)        printf("tskstart: error -- err=%d\n",err);}// tskall -- run a single testvoidtskall(void){    tid_t tidcur;    tsk_t *tsk;    u64 incmax;    u64 val;    int err;    xval = 0;    yval = 0;    kickoff = 0;    readycnt = 0;    donecnt = 0;    tidgate = 0;    // prealloc the task blocks    tsklist = calloc(tidmax + 1,sizeof(tsk_t));    // start all tasks    PGR(" St");    for (tidcur = 1;  tidcur <= tidmax;  ++tidcur)        tskstart(tidcur);    // wait for all tasks to be fully ready    PGR(" Sw");    while (1) {        if (tidload(&readycnt) == tidmax)            break;        qsleep(1);    }    // the starting gun -- all tasks are waiting for this    PGR(" Ko");    storeu64(&kickoff,1);    // wait for all tasks to be fully done    PGR(" Wd");    while (1) {        if (tidload(&donecnt) == tidmax)            break;        qsleep(1);    }    PGR(" Done\n");    // check the final count    incmax = loopmax * tidmax;    // show per-task statistics    for (tidcur = 1;  tidcur <= tidmax;  ++tidcur) {        tsk = tsklist + tidcur;        printf("tskall: tsk=%llu tsk_casmiss=%d (%.3f%%)\n",            (u64) tidcur,tsk->tsk_casmiss,(double) tsk->tsk_casmiss / loopmax);    }    err = 0;    // check for failure    val = loadu64(&xval);    if (val != incmax) {        printf("tskall: xval fault -- xval=%lld incmax=%lld\n",val,incmax);        err = 1;    }    // check for failure    val = loadu64(&yval);    if (val != incmax) {        printf("tskall: yval fault -- yval=%lld incmax=%lld\n",val,incmax);        err = 1;    }    if (! err)        printf("tskall: SUCCESS\n");    free(tsklist);}// main -- master controlintmain(void){    loopmax = LOOPMAX;    tidmax = TIDMAX;    inctype = 0;    tskall();    return 0;}

Here is the Makefile. Sorry for the extra boilerplate:

# caslock/Makefile -- make file for caslock## options:#   LOOPMAX -- maximum loops / thread##   TIDMAX -- maximum number of threads##   BARRIER -- generate fence/barrier instructions#     0 -- none#     1 -- use mfence everywhere#     2 -- use lfence for acquire, sfence for release##   CASOFF -- disable CAS to prove diagnostic works#     0 -- normal mode#     1 -- inhibit CAS during X/Y increment##   CASINLINE -- inline the CAS functions#     0 -- do _not_ inline#     1 -- inline them (WARNING: this fails for gcc but works for clang!)##   CASPOST -- increment gate release mode#     0 -- use fenced store#     1 -- use CAS store (NOTE: not really required)##   INCBARRIER -- use extra barriers around increments#     0 -- rely on CAS for barrier#     1 -- add extra safety barriers immediately before increment of X/Y##   TID64 -- use 64 bit thread "id"s#     0 -- use 32 bit#     1 -- use 64 bit##   VPTR -- use volatile pointers in function definitions#     0 -- use ordinary pointers#     1 -- use volatile pointers (NOTE: not really required)ifndef _CASLOCK_MK__CASLOCK_MK_ = 1  OLIST += caslock.o  ifndef LOOPMAX    LOOPMAX = 1000000  endif  ifndef TIDMAX    TIDMAX = 20  endif  ifndef BARRIER    BARRIER = 0  endif  ifndef CASINLINE    CASINLINE = 0  endif  ifndef CASOFF    CASOFF = 0  endif  ifndef CASPOST    CASPOST = 0  endif  ifndef INCBARRIER    INCBARRIER = 0  endif  ifndef TID64    TID64 = 0  endif  ifndef VPTR    VPTR = 0  endif  CFLAGS += -DLOOPMAX=$(LOOPMAX)  CFLAGS += -DTIDMAX=$(TIDMAX)  CFLAGS += -D_USE_BARRIER_=$(BARRIER)  CFLAGS += -D_USE_CASINLINE_=$(CASINLINE)  CFLAGS += -D_USE_CASOFF_=$(CASOFF)  CFLAGS += -D_USE_CASPOST_=$(CASPOST)  CFLAGS += -D_USE_INCBARRIER_=$(INCBARRIER)  CFLAGS += -D_USE_TID64_=$(TID64)  CFLAGS += -D_USE_VPTR_=$(VPTR)  STDLIB += -lpthread  ALL += caslock  CLEAN += caslock  OVRPUB := 1  ifndef OVRTOP    OVRTOP := $(shell pwd)    OVRTOP := $(dir $(OVRTOP))  endifendif# ovrlib/rules.mk -- rules control## options:#   GDB -- enable debug symbols#     0 -- normal#     1 -- use -O0 and define _USE_GDB_=1##   CLANG -- use clang instead of gcc#     0 -- use gcc#     1 -- use clang##   BNC -- enable benchmarks#     0 -- normal mode#     1 -- enable benchmarks for function enter/exit pairsifdef OVRPUB  ifndef SDIR    SDIR := $(shell pwd)    STAIL := $(notdir $(SDIR))  endif  ifndef GENTOP    GENTOP := $(dir $(SDIR))  endif  ifndef GENDIR    GENDIR := $(GENTOP)/$(STAIL)  endif  ifndef ODIR    ODIR := $(GENDIR)  endif  PROTOLST := true  PROTOGEN := @trueendififndef SDIR  $(error rules: SDIR not defined)endififndef ODIR  $(error rules: ODIR not defined)endififndef GENDIR  $(error rules: GENDIR not defined)endififndef GENTOP  $(error rules: GENTOP not defined)endififndef _RULES_MK__RULES_MK_ = 1  CLEAN += *.proto  CLEAN += *.a  CLEAN += *.o  CLEAN += *.i  CLEAN += *.dis  CLEAN += *.TMP  QPROTO := $(shell $(PROTOLST) -i -l -O$(GENTOP) $(SDIR)/*.c $(CPROTO))  HDEP += $(QPROTO)###VPATH += $(GENDIR)###VPATH += $(SDIR)  ifdef INCLUDE_MK    -include $(INCLUDE_MK)  endif  ifdef GSYM    CFLAGS += -gdwarf-2  endif  ifdef GDB    CFLAGS += -gdwarf-2    DFLAGS += -D_USE_GDB_  else    CFLAGS += -O2  endif  ifndef ZPRT    DFLAGS += -D_USE_ZPRT_=0  endif  ifdef BNC    DFLAGS += -D_USE_BNC_=1  endif  ifdef CLANG    CC := clang  endif  DFLAGS += -I$(GENTOP)  DFLAGS += -I$(OVRTOP)  CFLAGS += -Wall -Werror  CFLAGS += -Wno-unknown-pragmas  CFLAGS += -Wempty-body  CFLAGS += -fno-diagnostics-color  # NOTE: we now need this to prevent inlining (enabled at -O2)  ifndef CLANG    CFLAGS += -fno-inline-small-functions  endif  # NOTE: we now need this to prevent inlining (enabled at -O3)  CFLAGS += -fno-inline-functions  CFLAGS += $(DFLAGS)endifall: $(PREP) proto $(ALL)%.o: %.c $(HDEP)    $(CC) $(CFLAGS) -c -o $*.o $<%.i: %.c    cpp $(DFLAGS) -P $*.c > $*.i%.s: %.c    $(CC) $(CFLAGS) -S -o $*.s $<# build a library (type (2) build)$(LIBNAME):: $(OLIST)    ar rv $@ $(OLIST).PHONY: protoproto::    $(PROTOGEN) -i -v -O$(GENTOP) $(SDIR)/*.c $(CPROTO).PHONY: cleanclean::    rm -f $(CLEAN).PHONY: helphelp::    egrep '^#' Makefilecaslock:: $(OLIST) $(LIBLIST) $(STDLIB)    $(CC) $(CFLAGS) -o caslock $(OLIST) $(LIBLIST) $(STDLIB)

NOTE: I may have blown some of the asm constraints because when doing the CAS function as an inline, compiling with gcc produces incorrect results. However, clang works fine with inline. So, the default is that the CAS function is not inline. For consistency, I didn't use a different default for gcc/clang, even though I could.

Here's the disassembly of the relevant function with inline as built by gcc (this fails):

00000000004009c0 <incby_tidgate>:  4009c0:       31 c0                   xor    %eax,%eax  4009c2:       f0 0f b1 3d 3a 1a 20    lock cmpxchg %edi,0x201a3a(%rip)        # 602404 <tidgate>  4009c9:       00  4009ca:       0f 94 c2                sete   %dl  4009cd:       84 d2                   test   %dl,%dl  4009cf:       75 23                   jne    4009f4 <L01>  4009d1:       0f 1f 80 00 00 00 00    nopl   0x0(%rax)  4009d8:L00    64 48 8b 14 25 f8 ff    mov    %fs:0xfffffffffffffff8,%rdx  4009df:       ff ff  4009e1:       83 42 04 01             addl   $0x1,0x4(%rdx)  4009e5:       f0 0f b1 3d 17 1a 20    lock cmpxchg %edi,0x201a17(%rip)        # 602404 <tidgate>  4009ec:       00  4009ed:       0f 94 c2                sete   %dl  4009f0:       84 d2                   test   %dl,%dl  4009f2:       74 e4                   je     4009d8 <L00>  4009f4:L01    48 83 05 dc 17 20 00    addq   $0x1,0x2017dc(%rip)        # 6021d8 <ary+0xf8>  4009fb:       01  4009fc:       48 83 05 94 19 20 00    addq   $0x1,0x201994(%rip)        # 602398 <ary+0x2b8>  400a03:       01  400a04:       c7 05 f6 19 20 00 00    movl   $0x0,0x2019f6(%rip)        # 602404 <tidgate>  400a0b:       00 00 00  400a0e:       c3                      retq

Here's the disassembly of the relevant function with inline as built by clang (this succeeds):

0000000000400990 <incby_tidgate>:  400990:       31 c0                   xor    %eax,%eax  400992:       f0 0f b1 3d 3a 1a 20    lock cmpxchg %edi,0x201a3a(%rip)        # 6023d4 <tidgate>  400999:       00  40099a:       0f 94 c0                sete   %al  40099d:       eb 1a                   jmp    4009b9 <L01>  40099f:       90                      nop  4009a0:L00    64 48 8b 04 25 f8 ff    mov    %fs:0xfffffffffffffff8,%rax  4009a7:       ff ff  4009a9:       ff 40 04                incl   0x4(%rax)  4009ac:       31 c0                   xor    %eax,%eax  4009ae:       f0 0f b1 3d 1e 1a 20    lock cmpxchg %edi,0x201a1e(%rip)        # 6023d4 <tidgate>  4009b5:       00  4009b6:       0f 94 c0                sete   %al  4009b9:L01    84 c0                   test   %al,%al  4009bb:       74 e3                   je     4009a0 <L00>  4009bd:       48 ff 05 e4 17 20 00    incq   0x2017e4(%rip)        # 6021a8 <ary+0xf8>  4009c4:       48 ff 05 9d 19 20 00    incq   0x20199d(%rip)        # 602368 <ary+0x2b8>  4009cb:       c7 05 ff 19 20 00 00    movl   $0x0,0x2019ff(%rip)        # 6023d4 <tidgate>  4009d2:       00 00 00  4009d5:       c3                      retq  4009d6:       66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)  4009dd:       00 00 00