Differences between Futures in Python3 and Promises in ES6 Differences between Futures in Python3 and Promises in ES6 python python

Differences between Futures in Python3 and Promises in ES6


  1. In both Python and ES6, await/async are based on generators. Is it a correct to think Futures are the same as Promises?

Not Future, but Python's Task is roughly equivalent to Javascript's Promise. See more details below.

  1. I have seen the terms Task, Future and Coroutine used in the asyncio documentation. What are the differences between them?

They're quite different concepts. Mainly, Task consists of Future and Coroutine. Let's describe these primitives briefly (I am going to simplify lots of things to describe only main principles):

Future

Future is simply an abstraction of value that may be not computed yet and will be available eventually. It's a simple container that only does one thing - whenever the value is set, fire all registered callbacks.

If you want to obtain that value, you register a callback via add_done_callback() method.

But unlike in Promise, the actual computation is done externally - and that external code has to call set_result() method to resolve the future.

Coroutine

Coroutine is the object very similar to Generator.

A generator is typically iterated within for loop. It yields values and, starting from PEP342 acceptance, it receives values.

A coroutine is typically iterated within the event loop in depths of asyncio library. A coroutine yields Future instances. When you are iterating over a coroutine and it yields a future, you shall wait until this future is resolved. After that you shall send the value of future into the coroutine, then you receive another future, and so on.

An await expression is practically identical to yield from expression, so by awaiting other coroutine, you stop until that coroutine has all its futures resolved, and get coroutine's return value. The Future is one-tick iterable and its iterator returns actual Future - that roughly means that await future equals yield from future equals yield future.

Task

Task is Future which has been actually started to compute and is attached to event loop. So it's special kind of Future (class Task is derived from class Future), which is associated with some event loop, and it has some coroutine, which serves as Task executor.

Task is usually created by event loop object: you give a coroutine to the loop, it creates Task object and starts to iterate over that coroutine in manner described above. Once the coroutine is finished, Task's Future is resolved by coroutine's return value.

You see, the task is quite similar to JS Promise - it encapsulates background job and its result.

Coroutine Function and Async Function

Coroutine func is a factory of coroutines, like generator function to generators. Notice the difference between Python's coroutine function and Javascript's async function - JS async function, when called, creates a Promise and its internal generator immediately starts being iterated, while Python's coroutine does nothing, until Task is created upon it.

  1. Should I start writing Python code that always has an event loop running?

If you need any asyncio feature, then you should. As it turns out it's quite hard to mix synchronous and asynchronous code - your whole program had better be asynchronous (but you can launch synchronous code chunks in separate threads via asyncio threadpool API)