Information Gain calculation with Scikit-learn Information Gain calculation with Scikit-learn python python

Information Gain calculation with Scikit-learn


You can use scikit-learn's mutual_info_classif here is an example

from sklearn.datasets import fetch_20newsgroupsfrom sklearn.feature_selection import mutual_info_classiffrom sklearn.feature_extraction.text import CountVectorizercategories = ['talk.religion.misc',              'comp.graphics', 'sci.space']newsgroups_train = fetch_20newsgroups(subset='train',                                      categories=categories)X, Y = newsgroups_train.data, newsgroups_train.targetcv = CountVectorizer(max_df=0.95, min_df=2,                                     max_features=10000,                                     stop_words='english')X_vec = cv.fit_transform(X)res = dict(zip(cv.get_feature_names(),               mutual_info_classif(X_vec, Y, discrete_features=True)               ))print(res)

this will output a dictionary of each attribute, i.e. item in the vocabulary as keys and their information gain as values

here is a sample of the output

{'bible': 0.072327479595571439, 'christ': 0.057293733680219089, 'christian': 0.12862867565281702, 'christians': 0.068511328611810071, 'file': 0.048056478042481157, 'god': 0.12252523919766867, 'gov': 0.053547274485785577, 'graphics': 0.13044709565039875, 'jesus': 0.09245436105573257, 'launch': 0.059882179387444862, 'moon': 0.064977781072557236, 'morality': 0.050235104394123153, 'nasa': 0.11146392824624819, 'orbit': 0.087254803670582998, 'people': 0.068118370234354936, 'prb': 0.049176995204404481, 'religion': 0.067695617096125316, 'shuttle': 0.053440976618359261, 'space': 0.20115901737978983, 'thanks': 0.060202010019767334}


Here is my proposition to calculate the information gain using pandas:

from scipy.stats import entropyimport pandas as pddef information_gain(members, split):    '''    Measures the reduction in entropy after the split      :param v: Pandas Series of the members    :param split:    :return:    '''    entropy_before = entropy(members.value_counts(normalize=True))    split.name = 'split'    members.name = 'members'    grouped_distrib = members.groupby(split) \                        .value_counts(normalize=True) \                        .reset_index(name='count') \                        .pivot_table(index='split', columns='members', values='count').fillna(0)     entropy_after = entropy(grouped_distrib, axis=1)    entropy_after *= split.value_counts(sort=False, normalize=True)    return entropy_before - entropy_after.sum()members = pd.Series(['yellow','yellow','green','green','blue'])split = pd.Series([0,0,1,1,0])print (information_gain(members, split))


Using pure python:

def ig(class_, feature):  classes = set(class_)  Hc = 0  for c in classes:    pc = class_.count(c)/len(class_)    Hc += - pc * math.log(pc, 2)  print('Overall Entropy:', Hc)  feature_values = set(feature)  Hc_feature = 0  for feat in feature_values:    pf = feature.count(feat)/len(feature)    indices = [i for i in range(len(feature)) if feature[i] == feat]    clasess_of_feat = [class_[i] for i in indices]    for c in classes:        pcf = clasess_of_feat.count(c)/len(clasess_of_feat)        if pcf != 0:            temp_H = - pf * pcf * math.log(pcf, 2)            Hc_feature += temp_H  ig = Hc - Hc_feature  return ig