Numpy array broadcasting rules Numpy array broadcasting rules python python

Numpy array broadcasting rules


Well, the meaning of trailing axes is explained on the linked documentation page.If you have two arrays with different dimensions number, say one 1x2x3 and other 2x3, then you compare only the trailing common dimensions, in this case 2x3. But if both your arrays are two-dimensional, then their corresponding sizes have to be either equal or one of them has to be 1. Dimensions along which the array has size 1 are called singular, and the array can be broadcasted along them.

In your case you have a 2x2 and 4x2 and 4 != 2 and neither 4 or 2 equals 1, so this doesn't work.


From http://cs231n.github.io/python-numpy-tutorial/#numpy-broadcasting:

Broadcasting two arrays together follows these rules:

  1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both shapes have the same length.

  2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension, or if one of the arrays has size 1 in that dimension.

  3. The arrays can be broadcast together if they are compatible in all dimensions.
  4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes of the two input arrays.
  5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation or this explanation.


we should consider two points about broadcasting. first: what is possible. second: how much of the possible things is done by numpy.

I know it might look a bit confusing, but I will make it clear by some example.

lets start from the zero level.

suppose we have two matrices. first matrix has three dimensions (named A) and the second has five (named B). numpy tries to match last/trailing dimensions. so numpy does not care about the first two dimensions of B. then numpy compares those trailing dimensions with each other. and if and only if they be equal or one of them be 1, numpy says "O.K. you two match". and if it these conditions don't satisfy, numpy would "sorry...its not my job!".

But I know that you may say comparison was better to be done in way that can handle when they are devisable(4 and 2 / 9 and 3). you might say it could be replicated/broadcasted by a whole number(2/3 in out example). and i am agree with you. and this is the reason I started my discussion with a distinction between what is possible and what is the capability of numpy.